Recycling PVC Medical Tubing in Practice

Tobias Johnsen

Medical Tubing & Catheters 2 April 2025, Düsseldorf vingolus healthcare

Agenda

- About VinylPlus Healthcare
- The Challenge of Single-Use Plastics
- From Single-Use to Durable Hospital Wall Covering
- Quantifying Climate Benefits
- PVC Loop: Recyclability Study on Flexible PVC

About VinylPlus Healthcare

About VinylPlus Healthcare

Launched 1 April 2025

- Organised under VinylPlus[®], the European PVC industry's Commitment to sustainable development
- Brings together activities of
 - PVCMed Alliance (now discontinued as separate platform)
 - VinylPlus[®] Med for medical device recycling
 - VinylPlus[®] PharmPack for pharmaceutical blister packaging recycling

COMMITTED TO SUSTAINABILITY IN MEDICAL APPLICATIONS

committed to circularity

IN MEDICAL DEVICES

vinyles pharmpack

COMMITTED TO CIRCULARITY IN PHARMA PACKAGING

Why a New Platform?

- A Changing Landscape
- Fragmented Efforts
- Regulatory Momentum
- Need for Trusted Data & Expertise
- Unlocking Circular Solutions
- Amplifying the Industry's Voice
- VinylPlus Healthcare was created to connect the dots and lead the way!

healthcare

Our Activities

- Scientific Research and Studies
- Webinars and Events
- Conference Participation and Industry Engagement
- Stakeholder Meetings and Non-Industry Engagement
- Policy and Advocacy Efforts
- Online Communication and Resources
- Partners shape our activities!

Ole Grøndahl Hansen, Project Leader, and Tobias Johnsen, Consultant

Join Us!

- VinylPlus Healthcare is open to partners across the value chain
 - Manufacturers and Suppliers
 - Medical Device and Diagnostic Equipment Manufacturers
 - Recyclers and Waste Management Companies
 - Healthcare Institutions and Professionals
 - Associations and Industry Groups
 - Academia and Technical Institutes
 - Pharmaceutical Companies
 - Machinery Producers

By joining VinylPlus Healthcare, you also become part of the broader VinylPlus family – Europe's platform for sustainable development of the vinyl industry!

Get involved today. Contact us to explore partnership opportunities: info@vinylplushealthcare.eu

Discover More Pick up a leaflet and connect with us online

The Challenge of Single-Use Plastics

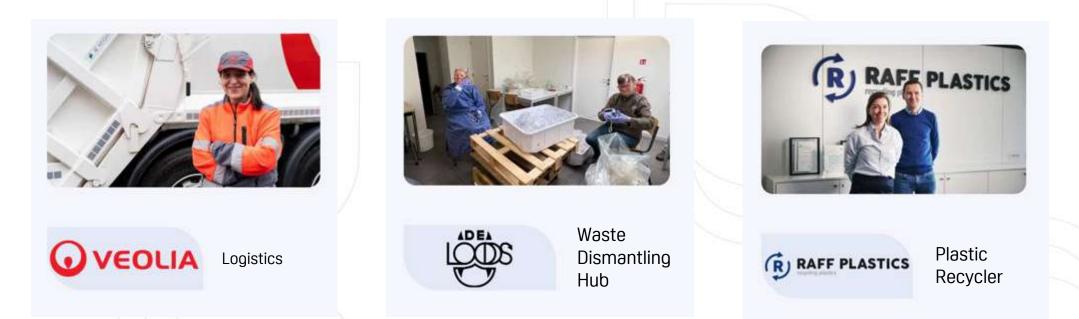
The Challenge of Single-Use Plastics

- European healthcare systems contribute 5–10% of national carbon footprints
- Medical devices and pharmaceuticals accounting for nearly half
- Vinyl is the single most widely used plastic in single-use medical devices, including oxygen masks, tubing, and various bags
- Suitable for mechanical recycling
 - High recycling potential due to large volume
 - Mono-material PVC is easier to sort and recycle than multi-material non-PVC products
- Compatible with advanced recycling where needed such as dissolution and pyrolysis

vinyles healthcare

From Single-Use to Durable Hospital Wall Covering

From Single-Use to Durable Hospital Wall Covering



- VinylPlus[®] Med launched in 2022 to help solve the single-use challenge
- Collects non-contaminated, REACH-compliant, DEHP-free medical devices at 25 Belgian hospital sites
 - VinylPlus-developed scanner to detect PVC and DEHP ensures correct sorting
- Main products:
 - Tubing
 - Bags
 - Face masks
- The recycled PVC is used as backing material for hospital wall covering, manufactured by Vescom in the Netherlands
 - Flooring being tested

From Single-Use to Durable Hospital Wall Covering

healthcare

Synergies: Veolia and De Loods already work together on other plastic recycling schemes (PP blue wraps, PS serology trays)

Expansion to France underway

Step-by-Step: The VinyIPlus Med Recycling Process

USE OF MEDICAL DEVICE

The medical device is used by patients for elective surgery and other treatments where the waste remains noncontaminated.

COLLECTION

Filled bins provided by VinyIPlus Med are collected by waste management companies.

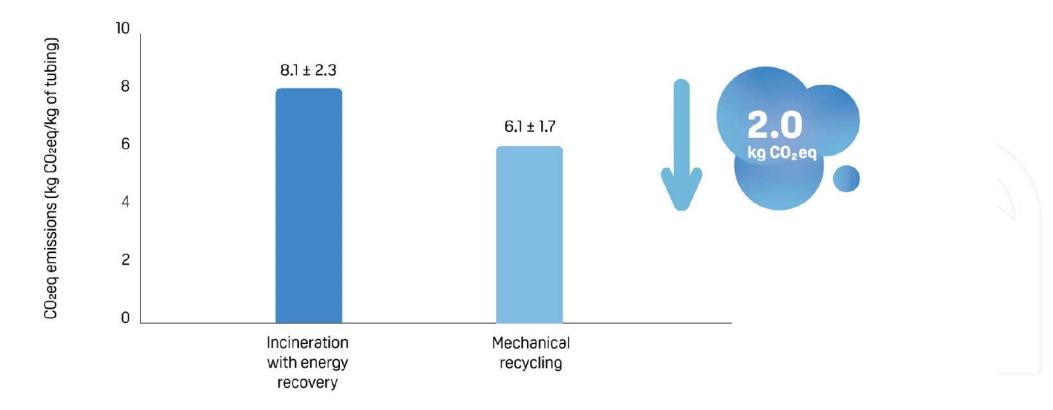
DISMANTLING

Our social partner, De Loods Nekker, dismantles the devices, removing nonvinyl parts.

RECYCLING

Our recycling partner, Raff Plastics, processes the waste.

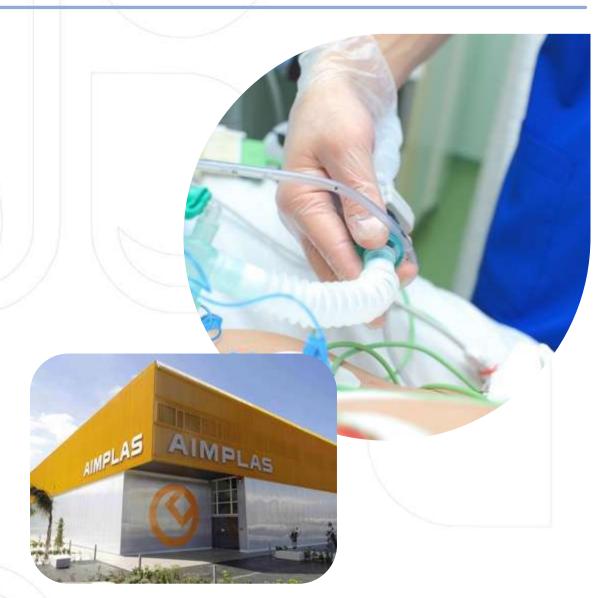
USE OF RECYCLED VINYL


The recycled vinyl is used for wall covering and other durable products for the healthcare sector.

Quantifying Climate Benefits

CRADLE-TO-GRAVE CARBON FOOTPRINT OF MEDICAL VINYL TUBING: RECYCLING VS. INCINERATION

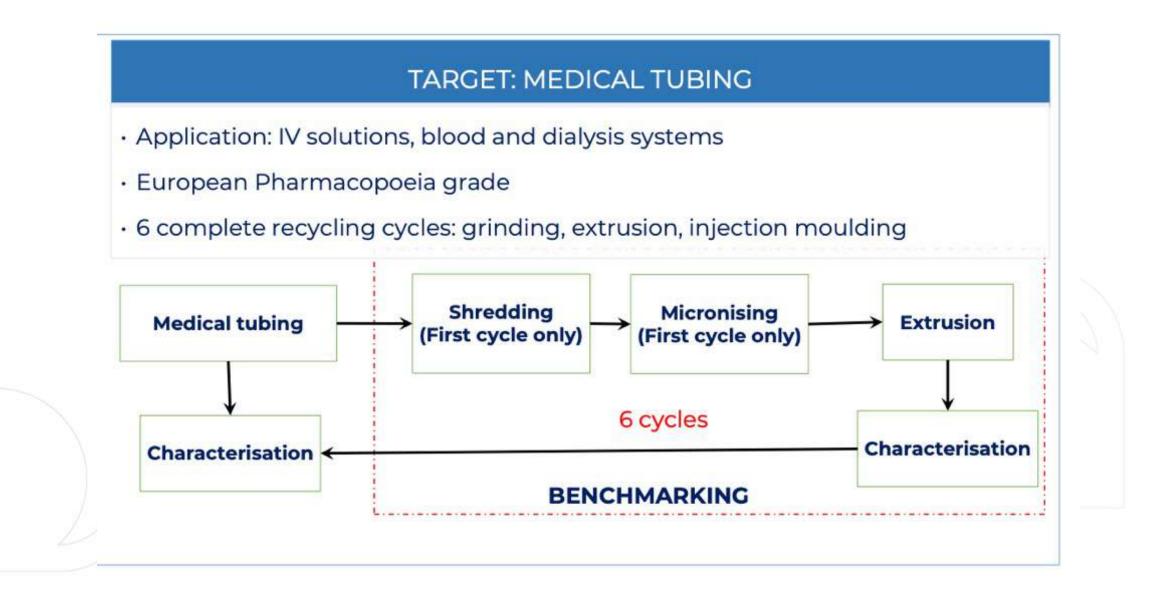
Source: Ecovamed. (2024, January). Life Cycle Assessment: Recycling PVC medical tubing cuts greenhouse gas emissions by 25% compared to incineration.


vinyles healthcare

PVC Loop: Recyclability Study on Flexible PVC

Why the Study?

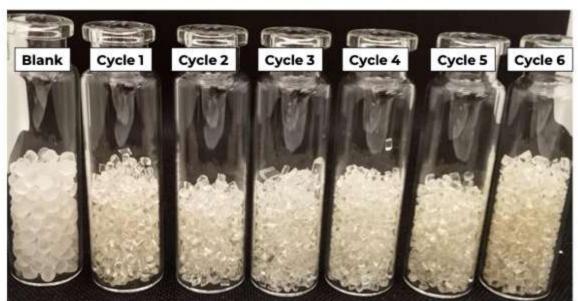
- Rigid PVC is well-documented to withstand several mechanical recycling cycles without significant loss of performance
 - 8-10x successful cycles achieved in experimental works
- Scientific literature offers limited insight into the recyclability of flexible (soft) PVC
- PVCMed Alliance initiated a study to close this knowledge gap
- Spanish institute AIMPLAS was commissioned to test how many times flexible PVC medical tubing can be recycled



PVC Loop at a Glance

		OBJECTIVES	
A GLANCE	Address recyclability with no re-stabilization	Evaluate mechanical recycling for market suitability	Assess impact of multicycle recycling on the performance of flexible PVC
PVC LOOP AT A GLANCE			

Processing

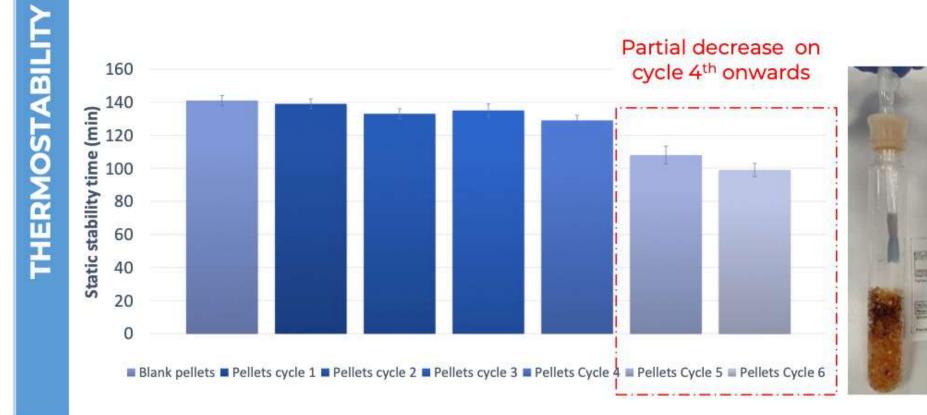


Extrusion

Pellets production in a pilot-plant Bausano D30 counter-rotating twin-screw extruder was used, aimed at a maximum melt temperature of 175 °C.

PROCESSING

Processing

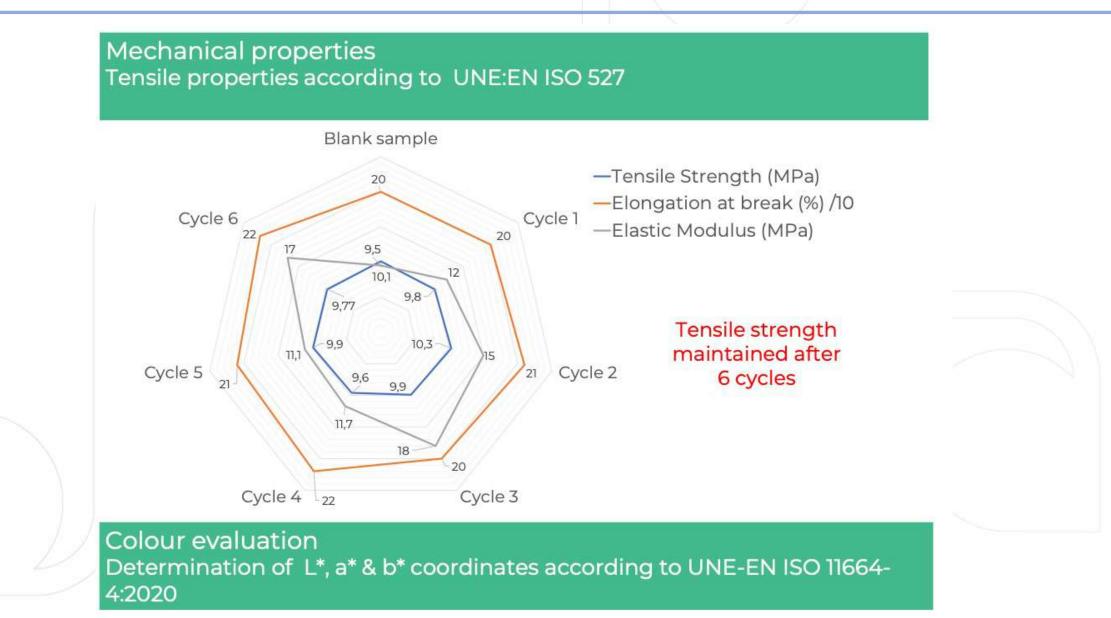


Thermostability

Static stability Congo red test at 180 °C, in accordance with S/N ISO 182-1

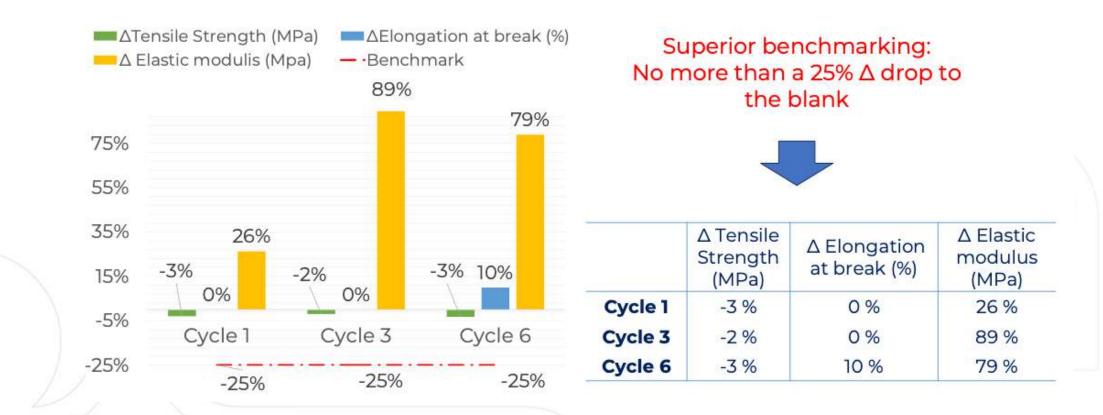
Thermostability

Dynamic stability Continuous stress in plastograph at a given temperature: 180°C, 185 °C and 190 °C

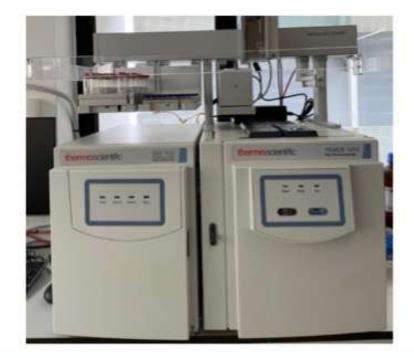

Stable up to 6 cycles

Description	and the second second second	& shear st ne (minut		Heat & shear stability time (minutes) – Fusion time omitted			
	180 °C	185 °C	190 °C	180 °C	185 °C	190 °C	
Blank	47 ± 2	44 ± 2	36 ± 2	37 ± 2	36 ± 2	27 ± 2	
Cycle 1	46 ± 2	38 ± 2	26 ± 2	36 ± 2	32 ± 2	21 ± 2	
Cycle 2	45 ± 2	33 ± 2	31 ± 2	29 ± 2	28 ± 2	26 ± 2	
Cycle 3	46 ± 2	40 ± 2	34 ± 2	34 ± 2	29 ± 2	26 ± 2	
Cycle 4	45 ± 2	39 ± 2	35 ± 2	35 ± 2	28 ± 2	26 ± 2	
Cycle 5	44 ± 2	38 ± 2	36 ± 2	31 ± 2	27 ± 2	26 ± 2	
Cycle 6	43 ± 2	36 ± 2	29 ± 2	33 ± 2	26 ± 2	24 ± 2	

Performance


vinyl healthcare

Performance


Mechanical properties Tensile properties benchmarking

Performance

Plasticiser content Determination of plasticiser content by solvent extraction and GC(-MS)

Plasticiser content remains stable across 6 recycling cycles

Sample	Plasticiser content %		
Blank	36		
Cycle 1	36		
Cycle 3	36		
Cycle 6	36		

Colour evaluation Determination of L*, a* & b* coordinates according to UNE-EN ISO 11664-4:2020

Light yellowing observed after 6 cycles

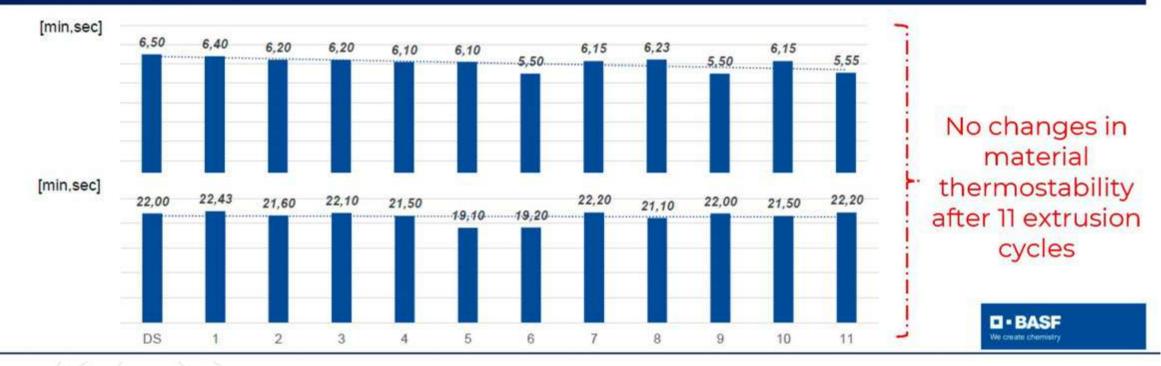
Sample	Colo	our coordinate		Delta values			
35	L*	a*	b*	DL	Da	Db	DE
Blank	95,61	-0,39	3,72	-	-	(
Cycle 1	94,49	-0,72	5,81	-1,12	-0,33	2,09	2,39
Cycle 2	94,94	-0,92	5,97	-0,67	-0,53	2,25	2,41
Cycle 3	94,56	-0,67	5,72	-1,05	-0,28	2,00	2,28
Cycle 4	94,33	-1,14	6,99	-1,28	-0,75	3,27	3,59
Cycle 5	93,15	-0,77	7,42	-2,46	-0,38	3,70	4,46
Cycle 6	92,74	-0,90	10,33	-2,87	-0,51	6,61	7,22

Key Findings

- Tensile strength and plasticiser content remained stable
- Only minor degradation in static thermostability after cycle 4
- Oynamic thermal stability confirmed material durability
- Slight yellowing observed after cycle 6 (aesthetic, not functional)

Recyclability assessment on PVC-P Performed up to 11 extrusion cycles

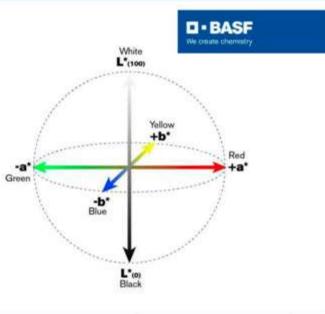
- Transparent formulation
 - > 100 phr PVC Inovyn 271 PC
 - > 60 phr Palatinol® 10-P DPHP
 - > 1,2 phr Ca-Stearate
 - ➢ 0,6 phr Zn-Stearate
- Compounding on double screw extruder
- Il extrusion cycles single screw extruder


Characterization

U - BASF We create chemistry

- Thermostability (Congo Red, PVC Thermomat)
- Colour
- Mechanical data (Elongation at break, 100% Modulus, etc.)
- Plasticiser extraction

Thermostability (Congo red, PVC Thermomat HCI-Stability [min, sec] VDE 0473 Part 811-3-2 and Metrohm Thermomat stability time at 200°C with 50µS as endpoint



Colour evaluation – Pressed plates at 170 °C Determination of colour coordinates L*, a* and b* according to UNE-EN ISO 11664-4:2020 Yellowness Index is a number calculated from spectrophotometric

Light yellowing observed after 6 extrusions; constant up to 11 extrusions

Sample	L	а	b	Yellowness index	DL	Da	Db	DE
1 X (DS)	88,97	-0,36	3,89	7,80	0,00	0,00	0,00	0,00
6 X (ES)	88,36	-0,66	4,78	9,50	-0,61	-0,30	-0,89	1,12
11 X (ES)	88,40	-0,72	4,93	9,54	-0,57	0,36	1,04	1,24

DS = Double screw extrusion; ES = Single screw extrusion

	nical properties properties after (Plasticiser content % Theorical value 37 %			
	Mechanic maintained	Plasticiser content stable			
Run	Breaking strength (MPa)	Elongation at break (%)	100% Modulus (MPa)	Run	Plasticiser content (%)
0 (DS)	18,2 / 18,7	310 / 332	8,9 / 8,7	0 (DS)	37
6 (ES)	18,3 / 18,2	314/326	9,0 / 8,6	6 (ES)	37
11 (ES)	20,2/18,4	350 / 317	9,0/8,9	11 (ES)	37

DS = Double screw extrusion; ES = Single screw extrusion

Factsheet Available at vinylplushealthcare.eu

Realistic Impact of Recycled PVC

- Flexible PVC can be recycled mechanically 6 (or up to 11) times without adding virgin PVC or additives, retaining key functional properties
- Critics argue might that this is "not much" but context matters:
 - Medical products often have <1-year lifespans</p>
 - Wall covering, flooring and roofing membranes last 20–40 years per cycle
- Examples of long-term use
 - PVC wall covering & flooring
 - Containing virgin PVC and recyclate (various ratios)
 - Typical lifetime: 20 years
 - Recycled 6 times \rightarrow material remains in use for up to 120 years
 - PVC Roofing Membranes
 - Product lifetime: 40 years
 - With recyclate and virgin PVC through 6 cycles → material stays in use for up to 240 years

Broader Circularity Potential

- Safe collection and recycling of medical PVC demonstrated in Europe, e.g. VinylPlus Med
- Flexible and rigid PVC can also be recycled through advanced technologies, offering complementary end-of-life solutions
 - Dissolution treatment of PVC-based pharma blister packaging yields purified PVC, now being tested for new rigid film
 - Pyrolysis of plastic waste containing 10% PVC produces pyrolysis oil suitable for steam cracking

Conclusion

- Flexible PVC has proven recyclability in medical applications
- Enables long-term material use in products with decadeslong service lives
- Infrastructure and innovation are in place to support circular models across healthcare
- Flexible and rigid PVC fit into both mechanical and advanced recycling streams, contributing to decarbonisation and resource efficiency

vinglous healthcare

COMMITTED TO SUSTAINABILITY IN MEDICAL APPLICATIONS

in 🔛 🕅

info@vinylplushealthcare.eu

vinylplushealthcare.eu